资源类型

期刊论文 641

年份

2024 2

2023 40

2022 46

2021 41

2020 32

2019 39

2018 30

2017 30

2016 31

2015 27

2014 23

2013 24

2012 16

2011 31

2010 36

2009 35

2008 36

2007 40

2006 18

2005 13

展开 ︾

关键词

数值模拟 26

仿真 15

可视化仿真 4

计算机模拟 4

系统仿真 3

Agent 2

HLA/RTI 2

优化 2

力学模型 2

动态模拟 2

卫星 2

复杂系统 2

建模仿真 2

模拟 2

模糊控制 2

神经网络 2

1T/2H-MoS2 1

4D CAD 1

AF/PSTM 1

展开 ︾

检索范围:

排序: 展示方式:

Modeling and simulation analysis on parallel hybrid air-fuel vehicle

Pinglu CHEN, Xiaoli YU, Xianghong NIE, Yidong FANG

《能源前沿(英文)》 2010年 第4卷 第4期   页码 553-559 doi: 10.1007/s11708-010-0008-y

摘要: Based on the vehicle simulation software ADVISOR, the model of a parallel air-fuel hybrid vehicle was established, and the modeling of an air powered engine (APE), heat exchanger, braking air tank and control strategy were discussed in detail. Using the vehicle model, a hybrid vehicle refitted from a traditional diesel car was analyzed. The results show that for the New European Driving Cycle (NEDC), the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Test (HWFET) driving cycle, the total reductions in fossil fuel consumption of the hybrid vehicle were 48.29%, 48.51% and 22.07%, respectively, and the emissions could be decreased greatly compared with the traditional diesel car, while the compressed air consumptions of the hybrid vehicle were 97.366, 85.292 and 56.358 kg/100 km, respectively. Using the diesel equivalent as the indicator of fuel economy, the hybrid vehicle could improve the fuel economy by 14.71% and 16.75% for the NEDC and the UDDS driving cycles and decrease by 5.04% for the HWFET driving cycle compared with the traditional car. The simulation model and analysis in this paper could act as the theoretical basis and research platform in optimizing the key components and control strategy of hybrid air-fuel vehicles.

关键词: air powered engine     hybrid vehicle     internal combustion engine     simulation    

An end-to-end 3d seismic simulation of underground structures due to point dislocation source by usingan FK-FEM hybrid approach

Zhenning BA; Jisai FU; Zhihui ZHU; Hao ZHONG

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1515-1529 doi: 10.1007/s11709-022-0887-0

摘要: Based on the domain reduction idea and artificial boundary substructure method, this paper proposes an FK-FEM hybrid approach by integrating the advantages of FK and FEM (i.e., FK can efficiently generate high-frequency three translational motion, while FEM has rich elements types and constitutive models). An advantage of this approach is that it realizes the entire process simulation from point dislocation source to underground structure. Compared with the plane wave field input method, the FK-FEM hybrid approach can reflect the spatial variability of seismic motion and the influence of source and propagation path. This approach can provide an effective solution for seismic analysis of underground structures under scenario of earthquake in regions where strong earthquakes may occur but are not recorded, especially when active faults, crustal, and soil parameters are available. Taking Daikai subway station as an example, the seismic response of the underground structure is simulated after verifying the correctness of the approach and the effects of crustal velocity structure and source parameters on the seismic response of Daikai station are discussed. In this example, the influence of velocity structure on the maximum interlayer displacement angle of underground structure is 96.5% and the change of source parameters can lead to the change of structural failure direction.

关键词: source-to-structure simulation     FK-FEM hybrid approach     underground structures     point dislocation source    

Performance analysis of solar absorption-subcooled compression hybrid refrigeration system in subtropical

Xiangyang YE,Liming LIU,Zeyu LI

《能源前沿(英文)》 2019年 第13卷 第1期   页码 185-192 doi: 10.1007/s11708-017-0452-z

摘要: Solar absorption-subcooled compression hybrid refrigeration system is a new type of efficient and economical solar refrigeration device which always meets the demand of cooling load with the change of solar irradiance. The performance of the hybrid system is higher due to the improvement of evaporator temperature of absorption subsystem. But simultaneously, the variation of working process as well as performance is complicated since the absorption and compression subsystems are coupled strongly. Based on the measured meteorological data of Guangzhou, a subtropical city in south China, a corresponding parametric model has been developed for the hybrid refrigeration system, and a program written by Fortran has been used to analyze the performance of the hybrid system under different external conditions. As the condensation temperature ranges from 38°C to 50°C, the working time fraction of the absorption subsystem increases from 75% to 85%. Besides, the energy saving fraction also increases from 5.31% to 6.02%. The average COP of the absorption subsystem is improved from 0.366 to 0.407. However, when the temperature of the absorption increases from 36°C to 48°C, the average COP of hybrid system decreases from 2.703 to 2.312. Moreover, the working time fraction of the absorption subsystem decreases from 80% to 71.7%. The energy saving fraction falls from 5.67% to 5.08%. In addition, when the evaporate temperature increases from 4°C to 14°C, the average COP of the absorption subsystem decreases from 0.384 to 0.365. The work of the compressor decreases from 48.2 kW to 32.8 kW and the corresponding average COP of the absorption subsystem is improved from 2.591 to 3.082.

关键词: solar     absorption-subcooled     compression hybrid     dynamic simulation     performance analysis    

Wind-diesel hybrid power system integration in the south Algeria

Khaireddine ALLALI,El Bahi AZZAG,Nabil KAHOUL

《能源前沿(英文)》 2015年 第9卷 第3期   页码 259-271 doi: 10.1007/s11708-015-0367-5

摘要: In most isolated sites situated in south Algeria, the diesel generators are the major source of electrical energy. Indeed, the power supply of these remote regions still poses order problems (technical, economical and ecological). The electricity produced with the help of diesel generators is very expensive and responsible for CO emission. These isolated sites have significant wind energy potential. Hence, the use of twinning wind-diesel is widely recommended, especially to reduce operating deficits. The objective of this paper is to study the global modeling of a hybrid system which compounds wind turbine generator, diesel generator and storage system. This model is based on the control strategy to optimize the functioning of the hybrid system and to consolidate the gains to provide proper management of energy sources (wind, diesel, battery) depending on the load curve of the proposed site. The management is controlled by a controller which ensures the opening/closing of different power switches according to meteorological conditions (wind speed, air mass, temperature, etc).

关键词: wind-diesel     storage system     isolated site     management     simulation    

Applying system dynamics to strategic decision making in construction

SangHyun LEE

《工程管理前沿(英文)》 2017年 第4卷 第1期   页码 35-40 doi: 10.15302/J-FEM-2017002

摘要: The author discusses the application of System Dynamics to high-level strategic simulation in construction. In particular, System Dynamics’ strength on representing feedback processes, aggregation, soft variables, and continuous simulation clock for high-level simulation are discussed using real modeling examples. From this exercise, it is concluded that System Dynamics offers a great potential for strategic simulation in construction. Further, the author proposes a comprehensive simulation framework that integrates System Dynamics and Discrete Event Simulation for a strategic decision making process in construction where operational details should be taken into account.

关键词: strategic project management     construction management     system dynamics     feedback process     hybrid simulation    

Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind

Hao WANG, Fengge ZHANG, Tao GUAN, Siyang YU

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 420-426 doi: 10.1007/s11465-017-0439-9

摘要:

A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.

关键词: wind power     brushless electrically excited synchronous generator     hybrid rotor     equivalent circuit    

数值凸透镜——实现兆瓦级电力电子系统广义混杂动力学行为的状态离散建模解算 Article

施博辰, 赵争鸣, 朱义诚, 虞竹珺, 鞠佳禾

《工程(英文)》 2021年 第7卷 第12期   页码 1766-1777 doi: 10.1016/j.eng.2021.07.011

摘要:

建模仿真已经成为构建虚拟数值实验平台和分析研究复杂工程系统必不可少的基础方法。然而,随着工程领域面对的系统越来越复杂,建模仿真方法也面临越来越大的挑战。这些复杂系统内部的动力学过程不仅包括连续状态,还包括离散事件,而且其动态过程跨越多个时间尺度。本文将这类复杂系统定义为“广义混杂系统”。兆瓦级电力电子系统是一类典型的广义混杂系统,已经被广泛应用于现代电网等多个关键领域,然而其建模解算仍然是一个瓶颈问题:要么计算时间太长,要么仿真不能收敛。为解决这一瓶颈问题,本文提出一种数值凸透镜方法,实现了广义混杂系统基于状态离散的建模解算。这一方法将传统的面向纯连续系统的时间离散仿真方法转变为面向广义混杂系统的状态离散仿真方法。本文将这一方法应用于一个面向新能源发电的大规模兆瓦级电力电子变换系统,与目前的通用仿真软件相比解算速度提高了1000倍。与此同时,所提方法首次实现了这一兆瓦级系统的开关瞬态仿真,仿真结果与实验测试结果相吻合,且仿真没有收敛性问题。本文提出的数值凸透镜方法实现了复杂的广义混杂系统多时间尺度动力学行为的高效建模解算,提升了工程领域基于虚拟数值实验认知和分析复杂动力学系统的能力。

关键词: 广义混杂系统     兆瓦级电力电子     建模仿真     数值凸透镜    

Integrated virtual-design methods for forecasting radiated noise of single cylinder diesel block

GUO Lei, HAO Zhiyong, XU Hongmei, LIU Lianyun

《能源前沿(英文)》 2008年 第2卷 第4期   页码 416-421 doi: 10.1007/s11708-008-0097-z

摘要: The two cycle dynamical results, such as the bearing load, the piston thrust, and the load spatial distribution etc., were obtained by hybrid dynamical simulation of the flexible assembly of the block and crank-train. The finite element model of the block was validated by modal test. The frequency response of the block was calculated using the finite element method (FEM). Finally, the radiated noise such as sound power level and efficiency in the out sound field were obtained using the direct boundary element method (BEM).

关键词: bearing     dynamical     frequency response     dynamical simulation     hybrid dynamical    

Seismic performance of steel MRF building with nonlinear viscous dampers

Baiping DONG,James M. RICLES,Richard SAUSE

《结构与土木工程前沿(英文)》 2016年 第10卷 第3期   页码 254-271 doi: 10.1007/s11709-016-0348-8

摘要: This paper presents an experimental study of the seismic response of a 0.6-scale three-story seismic-resistant building structure consisting of a moment resisting frame (MRF) with reduced beam sections (RBS), and a frame with nonlinear viscous dampers and associated bracing (called the DBF). The emphasis is on assessing the seismic performance for the design basis earthquake (DBE) and maximum considered earthquake (MCE). Three MRF designs were studied, with the MRF designed for 100%, 75%, and 60%, respectively, of the required base shear design strength determined according to ASCE 7-10. The DBF with nonlinear viscous dampers was designed to control the lateral drift demands. Earthquake simulations using ensembles of DBE and MCE ground motions were conducted using the real-time hybrid simulation method. The results show the drift demand and damage that occurs in the MRF under seismic loading. Overall, the results show that a high level of seismic performance can be achieved under DBE and MCE ground motions, even for a building structure designed for as little as 60% of the base shear design strength required by ASCE 7-10 for a structure without dampers.

关键词: seismic response     steel MRF     nonlinear viscous damper     design basis earthquake     real-time hybrid simulation    

Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and

Alireza REZVANI,Ali ESMAEILY,Hasan ETAATI,Mohammad MOHAMMADINODOUSHAN

《能源前沿(英文)》 2019年 第13卷 第1期   页码 131-148 doi: 10.1007/s11708-017-0446-x

摘要: Photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is intermittent because of depending on weather conditions. Therefore, the wind power can be considered to assist for a stable and reliable output from the PV generation system for loads and improve the dynamic performance of the whole generation system in the grid connected mode. In this paper, a novel topology of an intelligent hybrid generation system with PV and wind turbine is presented. In order to capture the maximum power, a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. The average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison with the conventional methods. The pitch angle of the wind turbine is controlled by radial basis function network-sliding mode (RBFNSM). Different conditions are represented in simulation results that compare the real power values with those of the presented methods. The obtained results verify the effectiveness and superiority of the proposed method which has the advantages of robustness, fast response and good performance. Detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.

关键词: photovoltaic     wind turbine     hybrid system     fuzzy logic controller     genetic algorithm     RBFNSM    

Robust ensemble of metamodels based on the hybrid error measure

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 623-634 doi: 10.1007/s11465-021-0641-7

摘要: Metamodels have been widely used as an alternative for expensive physical experiments or complex, time-consuming computational simulations to provide a fast but accurate analysis. However, challenge remains in the prior determination of the most suitable metamodel for a particular case because of the lack of information about the actual behavior of a system. In addition, existing studies on metamodels have largely restricted on solving deterministic problems (e.g., data from finite element models), whereas some real-life engineering problems (e.g., data from physical experiment) are stochastic problems with noisy data. In this work, a robust ensemble of metamodels (EMs) is proposed by combining three regression stand-alone metamodels in a weighted sum form. The weight factor is adaptively determined according to the hybrid error metric, which combines global and local error measures to improve the accuracy of the EMs. Furthermore, three typical individual metamodels that can filter noise are selected to construct the EMs to extend their application in practical engineering problems. Three well-known benchmark problems with different levels of noise and three engineering problems are used to verify the effectiveness of the proposed EMs. Results show that the proposed EMs have higher accuracy and robustness than the individual metamodels and other typical EMs in major cases.

关键词: metamodel     ensemble of metamodels     hybrid error measure     stochastic problem    

Design method and verification of a hybrid prosthetic mechanism with energy-damper clutchable device

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 747-764 doi: 10.1007/s11465-021-0644-4

摘要: Transfemoral amputees (TAs) have difficulty in mobility during walking, such as restricted movement of lower extremity and body instability, yet few transfemoral prostheses have explored human-like multiple motion characteristics by simple structures to fit the kinesiology, biomechanics, and stability of human lower extremity. In this work, the configurations of transfemoral prosthetic mechanism are synthesized in terms of human lower-extremity kinesiology. A hybrid transfemoral prosthetic (HTP) mechanism with multigait functions is proposed to recover the gait functions of TAs. The kinematic and mechanical performances of the designed parallel mechanism are analyzed to verify their feasibility in transfemoral prosthetic mechanism. Inspired by motion–energy coupling relationship of the knee, a wearable energy-damper clutched device that can provide energy in knee stance flexion to facilitate the leg off from the ground and can impede the leg’s swing velocity for the next stance phase is proposed. Its co-operation with the springs in the prismatic pairs enables the prosthetic mechanism to have the energy recycling ability under the gait rhythm of the knee joint. Results demonstrate that the designed HTP mechanism can replace the motion functions of the knee and ankle to realize its multimode gait and effectively decrease the peak power of actuators from 94.74 to 137.05 W while maintaining a good mechanical adaptive stability.

关键词: hybrid transfemoral prosthetic mechanism     energy recycling     wearable mechanical clutched device     mechanical adaptive stability    

Diffusion process in enzyme–metal hybrid catalysts

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 921-929 doi: 10.1007/s11705-022-2144-4

摘要: Enzyme–metal hybrid catalysts bridge the gap between enzymatic and heterogeneous catalysis, which is significant for expanding biocatalysis to a broader scope. Previous studies have demonstrated that the enzyme–metal hybrid catalysts exhibited considerably higher catalytic efficiency in cascade reactions, compared with that of the combination of separated enzyme and metal catalysts. However, the precise mechanism of this phenomenon remains unclear. Here, we investigated the diffusion process in enzyme–metal hybrid catalysts using Pd/lipase-Pluronic conjugates and the combination of immobilized lipase (Novozyme 435) and Pd/C as models. With reference to experimental data in previous studies, the Weisz–Prater parameter and efficiency factor of internal diffusion were calculated to evaluate the internal diffusion limitations in these catalysts. Thereafter, a kinetic model was developed and fitted to describe the proximity effect in hybrid catalysts. Results indicated that the enhanced catalytic efficiency of hybrid catalysts may arise from the decreased internal diffusion limitation, size effect of Pd clusters and proximity of the enzyme and metal active sites, which provides a theoretical foundation for the rational design of enzyme–metal hybrid catalysts.

关键词: enzyme–metal hybrid catalyst     internal diffusion     proximity effect     kinetic model    

Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle

P. PADMAGIRISAN, V. SANKARANARAYANAN

《能源前沿(英文)》 2019年 第13卷 第2期   页码 296-306 doi: 10.1007/s11708-018-0605-8

摘要: This paper proposes a powertrain controller for a solar photovoltaic battery powered hybrid electric vehicle (HEV). The main objective of the proposed controller is to ensure better battery management, load regulation, and maximum power extraction whenever possible from the photovoltaic panels. The powertrain controller consists of two levels of controllers named lower level controllers and a high-level control algorithm. The lower level controllers are designed to perform individual tasks such as maximum power point tracking, battery charging, and load regulation. The perturb and observe based maximum power point tracking algorithm is used for extracting maximum power from solar photovoltaic panels while the battery charging controller is designed using a PI controller. A high-level control algorithm is then designed to switch between the lower level controllers based on different operating conditions such as high state of charge, low state of charge, maximum battery current, and heavy load by respecting the constraints formulated. The developed algorithm is evaluated using theoretical simulation and experimental studies. The simulation and experimental results are presented to validate the proposed technique.

关键词: battery management system     hybrid electric vehicles (HEVs)     maximum power point tracking (MPPT)     solar photovoltaic    

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 576-594 doi: 10.1007/s11709-021-0728-6

摘要: Reinforced concrete beams consisting of both steel and glass-fiber-reinforced polymer rebars exhibit excellent strength, serviceability, and durability. However, the fatigue shear performance of such beams is unclear. Therefore, beams with hybrid longitudinal bars and hybrid stirrups were designed, and fatigue shear tests were performed. For specimens that failed by fatigue shear, all the glass-fiber-reinforced polymer stirrups and some steel stirrups fractured at the critical diagonal crack. For the specimen that failed by the static test after 8 million fatigue cycles, the static capacity after fatigue did not significantly decrease compared with the calculated value. The initial fatigue level has a greater influence on the crack development and fatigue life than the fatigue level in the later phase. The fatigue strength of the glass-fiber-reinforced polymer stirrups in the specimens was considerably lower than that of the axial tension tests on the glass-fiber-reinforced polymer bar in air and beam-hinge tests on the glass-fiber-reinforced polymer bar, and the failure modes were different. Glass-fiber-reinforced polymer stirrups were subjected to fatigue tension and shear, and failed owing to shear.

关键词: fatigue     shear     hybrid stirrups     hybrid reinforcement     fiber-reinforced polymer    

标题 作者 时间 类型 操作

Modeling and simulation analysis on parallel hybrid air-fuel vehicle

Pinglu CHEN, Xiaoli YU, Xianghong NIE, Yidong FANG

期刊论文

An end-to-end 3d seismic simulation of underground structures due to point dislocation source by usingan FK-FEM hybrid approach

Zhenning BA; Jisai FU; Zhihui ZHU; Hao ZHONG

期刊论文

Performance analysis of solar absorption-subcooled compression hybrid refrigeration system in subtropical

Xiangyang YE,Liming LIU,Zeyu LI

期刊论文

Wind-diesel hybrid power system integration in the south Algeria

Khaireddine ALLALI,El Bahi AZZAG,Nabil KAHOUL

期刊论文

Applying system dynamics to strategic decision making in construction

SangHyun LEE

期刊论文

Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind

Hao WANG, Fengge ZHANG, Tao GUAN, Siyang YU

期刊论文

数值凸透镜——实现兆瓦级电力电子系统广义混杂动力学行为的状态离散建模解算

施博辰, 赵争鸣, 朱义诚, 虞竹珺, 鞠佳禾

期刊论文

Integrated virtual-design methods for forecasting radiated noise of single cylinder diesel block

GUO Lei, HAO Zhiyong, XU Hongmei, LIU Lianyun

期刊论文

Seismic performance of steel MRF building with nonlinear viscous dampers

Baiping DONG,James M. RICLES,Richard SAUSE

期刊论文

Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and

Alireza REZVANI,Ali ESMAEILY,Hasan ETAATI,Mohammad MOHAMMADINODOUSHAN

期刊论文

Robust ensemble of metamodels based on the hybrid error measure

期刊论文

Design method and verification of a hybrid prosthetic mechanism with energy-damper clutchable device

期刊论文

Diffusion process in enzyme–metal hybrid catalysts

期刊论文

Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle

P. PADMAGIRISAN, V. SANKARANARAYANAN

期刊论文

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

期刊论文